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Minimization of the thickness of a nonuniform absorbing layer  at specified modulus and 
phase of the ref lected monochromatic  wave is a mat ter  of r ecord  [1]. Only the modulus 
of the reflection coefficient is general ly  prespecif ied in pract ice .  The minimization prob-  
lem applicable to that case is d iscussed in the present  ar t ic le .  

1. Statement of Prob lem.  Let a plane monochromatic  wave impinge on a flat nonuniform absorbing 
layer  whose index of ref rac t ion  varies  along the normal,  in the same direction.  Assuming, as in [1], 

n ~ = t + (t + i~l) Q(~) (1.1) 

for the square of the relat ive ref rac t ion index, we will then have the following differential equations for the 
rea l  and imaginary  par ts  of the admittance G = p + iq: 

ap dq = p :  q2 t - Q  d-~ = ~IQ - 2pq, -dT- - -  - -  (1.2) 

Here G is the input admittance of the layer  r e f e r r e d  to the wave admittance (1/00%) of the medium 
from which the wave a r r ives ;  P0, co are the density of the medium and the speed of the longitudinal wave 
t ravers ing  the medium; ~ = ~CoiX is the reduced thickness of the layer  bounded by the planes x = 0 and 
x = e; w is the angular frequency; x is the coordinate;  7? is specified positive constant;  Q(r) is a nonnega- 
tive function satisfying the definition 

O ~ Q ( ' ~ ) ~ N  

The boundary conditions imposed on values of the phase coordinates p and q are 

(1.3) 

p (0) = p~ q (0) = q~ (~ = 0) (1.4) 

q ) ~  (~+p22+%2 [ ~ [ 2 = 0  (~=~e) (1.5) 

where G(0) = p~ + iq~ G(~'e) = Ge = Pe + iqe are the respect ive input admittances of the load and of the non- 
uniform layer ,  ~'e is the reduced thickness of the layer  bounded by the planes x = 0 and x = e, and Ifie[ is 
the assigned value of the modulus of the reflection coefficient.  

The optimization problem is formulated as follows: to determine the phase coordinates  p(r) and 
q(z),  satisfying equations (1 2) and initial conditions (1.4), and also the control  function Q(r) obeying in- 
equality (1.3), such that the reduced thickness T e of the layer  will be minimized when constra int  (1.5) is 
satisfied.  

2. Ext remal  Par t ia l  Arcs .  The optimum problem formulated [(1.2)-(1.5)] differs f rom the one con-  
s idered in [1] solely in the form of the boundary condition (1.5). Hence the principal inferences drawn in 
[1] remain valid here .  The optimum control  can assume only the boundary values: Q = 0, or else Q = N. 
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C o r r e s p o n d i n g  to those  va lues ,  the op t i m um admi t t ance  hodograph  is found f r o m  solut ions  of the d i f f e r e n -  
t ia l  equat ions  (1.2) 

p + iq = - po § ~qc ~ ~ (1 + (t _ ~) Q)'/, tg [~ (t § (1 ~ i~l) Q)'/~] 
i -Ti(po + iqo) (t + (1 + i.q)Q)-'l, tg [v (t + (1 + i~l) Q)'/,] (2.1) 

where  (P0, %) is a point  of the admi t tance  plane c o r r e s p o n d i n g  to the onse t  of the change  in �9 on any sub in-  
t e r v a l  within which Q(T) r e t a i n s  its value unaf fec ted .  The minus  s ign in f ron t  of i in Eq.  (2.1) c o r r e s p o n d s  
to d i r e c t  in tegra t ion ,  the plus s ign to i n v e r s e  i~ tegra t ion .  The d i f fe ren t ia l  equat ions  for  the aux i l i a ry  phase  
coo rd ina t e s  (Lagrang ian  mul t ip l i e r s )  a re  

dT~ dkq (2.2) 
d'~ - -  2q~'v - -  2pEq, d'-7- = 2pk~ + 2qkq 

The swi tching  funct ion,  whose  z e r o s  de t e rmine  the " m o m e n t s "  of the s tepwise  va r i a t ion  in con t ro l  
Q(z) f r o m  0 to N (and vice v e r s a ) ,  is e x p r e s s e d  in t e r m s  of the Lag rang i an  mul t ip l i e r s  

K = ~l)~v -- Eq (2.3) 

The con t ro l  value is m a x i m i z e d  on in t e rva l s  of the op t imum admi t tance  hodographs  such  tha t  K > 0 ,  
and m i n i m i z e d  on those  in t e rva l s  where  K < 0. The f i r s t  i n t eg ra l  of E q s .  (1.2) and (2.2) is 

H )  = K Q  - -  2pq~v  --  (l + q~ - -  p2) ~q = i (2.4) 

In the r eg ion  �9 = 2pq +7  (1 + q~-p2) > 0, swi tching (i .e. ,  a s tepwise  change in the con t ro l  r e sponse )  
can  occu r  only f r o m  m i n i m u m  to m a x i m u m ,  and the r e v e r s e  holds  for  the �9 < 0 r eg ion .  

Equa t ion  (1.5) leads ,  in a c c o r d a n c e  with [1] [ fo rmula  (2.4)] to the fal lowing boundary  condi t ions  for  
the Lagrang ian  mu l t i p l i e r s  : 

4(p e 
~,pe = )~p (T~) = Z,~ [0 + p~)~ + %~]-" (2.5) 

8peq e 

where  •  is an unknown cons tan t ,  go e = 1 + q e 2 - P e  2 . The ex i s t ence  of a r e l a t ionsh ip  between va lues  of the 
phase  coo rd ina t e s  Pe, qe,  and the aux i l i a ry  funct ions Ap e,  k q  e at ~- = ~'e, and the absence  of any such  r e -  
la t ionship  at T = 0, allow us  to infer  tha t  (s imul taneous)  in tegra t ion  of E q s .  (1.2) and (2.2) in the inve r se  
d i r ec t ion  should  not  be a t t empted .  As a r e s u l t  of i nve r se  in tegra t ion  of  equat ions  (1.2), we have the e x p r e s -  
s ion (2.1) with the plus s ign in f ron t  of the i m a g i n a r y  unit .  In tegra t ion  of equat ions  (2.2) can be p e r f o r m e d  
with the aid of the aux i l i a ry  c om pl e x  function k = ~t q + th p, for  which the two equat ions  (2.2) a re  wr i t t en  in 
the f o r m  

dMd'~ = ~2iG)~  (2.6) 

The solut ion of Eq .  (2.6) wil l  be 

,.r ~. ,,r -~  

0 0 0 0 0 

(2.7) 

or ,  by using the e x p r e s s i o n  fo r  G = p + iq [Eq. (2.1)], 

~qo + i~po [ (po + gqo) tg [1: (l + (t + i~) Q)V,] \ 2 
= t + tg ~- [~ (t + (t + ~l) Q),I~] \ t -~- f (1 + (1 + ~) Q)'/, ] (2.8) 

Here. (~ p~ k. ~ is a. point  on the aux i l i a ry  plane ~ pk q c o r r e s p o n d i n g  to the onse t  of va r i a t ion  in • on 
any sub in te rva l  within which  Q(T) r e t a in s  its value una l t e r ed .  

3.  Switching C u r v e s .  In o r d e r  to solve the op t imum p r o b l e m  f o r m u l a t e d  above,  we have to c o n s t r u c t  
a f ami ly  of swi tching  c u r v e s  on the phase  plane pq, i .e . ,  we have to find the g e o m e t r i c a l  locus  of points  d e -  
t e r m i n e d  using E q.  (2.1), at  those  va lues  of  ~-j (switching moment s )  at which the swi tching function (2.3) 
van i shes .  The ini t ia l  da ta  for  c ons t ruc t i ng  the f ami ly  of c u r v e s  will  be the finite va lues  of the phase  c o -  
o rd ina tes  (Pe, qe) lying on a c i r c l e  of spec i f i ed  modulus  of the re f l ec t ion  coef f ic ien t  (Fig.  1). The qua l i t a -  
tive f ea tu re s  of the s i tua t ion  of i n t e r e s t  a re  such .  By ut i l iz ing E q s .  (2.3) and (2.7) we find, fo r  the swi t ch -  
ing funct ion 

121 



Fig. 1 
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The v a l u e s  of the swi t ch ing  m o m e n t s  a r e  d e t e r m i n e d  f r o m  
the equa t ions  

KS~ 
tg 2 ~ p dT = - -  (~po)j + ~] (~qo)s ( /=  t . . . . .  n) (3.2) 

0 

Since  the v a r i a b l e  Kj ~ v a n i s h e s  (by def in i t ion)  fo r  the s e c o n d  
and s u b s e q u e n t  swi tch ing  c u r v e s ,  for  t h e s e  we have  

,j  

p d ~ = ~ -  ( i = 2  . . . . .  ~) (3.3) 
0 

F o r  t hose  i n t e r v a l s  of the o p t i m u m  a d m i t t a n c e  h o d o g r a p h s  
such  tha t  Q = 0, wi th  the a id  of  the new v a r i a b l e  a ( see  F i g .  1), we 
have  

p = pjO _~ r O cos a, q = r 7 sin a (3.4) 
P~~ = ps2 § q j2 Jr i 

2Ps , rio = [(pjO)2 _ il,/, 

and so  

a~+l - -  as = ~ (3.5) 

E q u a t i o n s  (3.4) and (3.5) show tha t  t h e s e  i n t e r v a l s  of the  a d -  
m i t t a n c e  hodog ra phs  a r e  h a l f - c i r c l e s  wi th  r a d i i  r j  ~ and c e n t e r s  
ly ing  on the p a x i s .  In the c a s e  of i n t e r v a l s  of the  a d m i t t a n c e  
h o d o g r a p h s  such  tha t  Q = N (and ~? ~ 0), e q u a t i o n s  (3.2) a r e  s o l v e d  
n u m e r i c a l l y ,  o r  a p p r o x i m a t e l y .  When i n t e r e s t e d  in ~-i v a l u e s ,  we 
can  s t a t e  for  the f i r s t  sw i t ch ing  c u r v e  

@e 
tg 2 ~ p dT = 

2~lp~q~ - -  %,  (3.6) 
0 

F o r  po in t s  of a c i r c l e  of s p e c i f i e d  modu lus  of  r e f l e c t i o n  c o e f f i c i e n t  c l o s e  to the p o i n t  a s ( F i g s .  2 and 3), 
the r i g h t - h a n d  m e m b e r  of E q .  (3.6) w i l l  be i n f i n t t e s i m a l l y  s m a l l ,  so  tha t  

2 q p e q e  __ (~ ~ (3.7) 
0 

The ~-I v a l u e s  wi l l  a l so  be s m a l l  in tha t  c a s e ;  the swi t ch ing  c u r v e  beg in s  a t  po in t  a 1 . As  G e b e c o m e s  
f u r t h e r  r e m o v e d  f r o m  p o i n t  a s, the T l v a l u e s  wi l l  g r o w .  P o i n t  a 2 (F ig .  2) w i l l  be the e x t r e m e  po in t  on the  
s p e c i f i e d  c i r c l e ,  s i n c e  the  e x t r e m a l  a d m i t t a n c e  h o d o g r a p h s  e m e r g i n g  f r o m  the �9 < 0 r e g i o n  w i l l  not  be 
o p t i m a l  (the m i n i m u m  t h i c k n e s s  for  t h e s e  l oc i  w i l l  be g r e a t e r  by  an amount  c o r r e s p o n d i n g  to tha t  p o r t i o n  
of the  h o d o g r a p h  l y i n g  wi th in  the  c i r c l e  of the s p e c i f i e d  modu lus  of the r e f l e c t i o n  c o e f f i c i e n t ) .  

The p o s i t i o n  of the " f ina l "  po in t  on the swi t ch ing  c u r v e  i s  not  qui te  s o  s i m p l e  to e s t a b l i s h .  H e r e  we 
s e t  up a f a m i l y  of c lockwi se -unwind ing  s p i r a l i n g  a d m i t t a n c e  h o d o g r a p h s  (winding f r o m  the focus  Gr162 = 
[1 + (1 + i~7)N] 1/2 ) " t h r e a d i n g "  tha t  p o r t i o n  of the  s p e c i f i e d  c i r c l e  b e t w e e n p o i n t s  a s and a 2 . Some  of the 
h o d o g r a p h s  (of t hose  e m e r g i n g  f r o m  the p o r t i o n  of the c i r c l e  a d j a c e n t  to po in t  a 1) w i l l  p a s s  t h rough  the 
po in t  a t  which  d q / d p  = oo and wi l l  d e f l e c t  in the d i r e c t i o n  of i n c r e a s i n g  phase  c o o r d i n a t e  p.  The o t h e r s  
( e m e r g i n g  f r o m  the p o r t i o n  of the c i r c l e  a d j a c e n t  to the  po in t  a2) w i l l  d e f l e c t  to the oppos i t e  s ide  and then  
i n t e r s e c t  the p = 0 axis  and cont inue  into the  nega t ive  h a l f - p l a n e  p < 0. 

S ince  p r o c e s s e s  a s s o c i a t e d  wi th  p r o p a g a t i o n  of waves  t h rough  a b s o r b i n g  m e d i a  a r e  d e s c r i b e d  by  p h a s e  
c o o r d i n a t e s  on the p o s i t i v e  h a l f - p l a n e ,  the p = 0 ax i s  can  be c o n s i d e r e d  the b o u n d a r y  of tha t  r e g i o n  of a d -  
m i t t a n c e  v a l u e s .  C o n s e q u e n t l y ,  i t  i s  p r e c i s e l y  on tha t  ax is  tha t  the f ina l  po in t  of the sw i t ch ing  c u r v e  wi l l  
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lie, if that point belongs to any of the hodographs deflecting in the 
direction of the negative half-plane p < 0 and intersect ing that 
axis. 

If this switching point lying on the p = 0 axis is found in the 
inverse integration of equations (1.2) proceeding f rom some point 
(Pc, qe), we shall find, by continuing the integration process  along 
the axis, that the switching function will be identically zero  eve ry -  
where on that axis, all the way out to the infinitely remote  point 
on the axis. This is inferred from Eq. (3.1) when the substitution 
p = K 0 = 0 is made and is a consequence of the homogeneity of the 
differential equations for Lagrangian mult ipl iers .  

This is quite understandable once we bear  in mind that the 
nonvanishing rea l  par t  of the admittance of an a rb i t r a ry  medium, 
with optimum matching of purely imaginary loads to the medium, 
will co r respond  to switching points lying solely on the p = 0 axis. 
But if not a single one of the hodographs emerging from points on 
the c i rc le  of specified modulus of the reflection coefficient in te r -  
sec ts  the p = 0 axis, then the final point on the switching curve 
(corresponding to point bl) will then lie on the hyperbola  �9 = 0. 
(The final point cannot lie in the ~ < 0 region,  since the Q - 0 

value cor responds  to the optimum hodograph in that region.) This pattern will hold in the case of low ~? 
values and reasonably low N values.  As ~? and N increase ,  a family of optimum admittance loci in t e r sec t -  
ing the p = 0 axis will show up. When the ~? and N values are fixed, the question of whether a c i rc le  of the 
specified modulus of the reflection coefficient cor responds  to some family of optimum hodographs in ter -  
secting the p = 0 axis will be easy  to solve.  All that will be required  is to plot the "limiting" locus (hodo- 
graph) intersect ing the p = 0 axis at infinitely large q values in accordance with the formula* 

p~ + iq~ = ~(i + (1 + ~)N)'I 'ctg [~(1 + (t + tq)N)'/*I (3.8) 

tf the limiting locus proceeds to the left of and below point a ~, there will be no optimum admittance 
hodographs intersect ing the p = 0 axis, so that the f i rs t  switching curve will be depicted by the curve a lclbl 
(Fig. 3). We can infer f rom Eqs.  (2.8) and (3.1) that the switching point for the limiting hodograph (inde- 
pendently of the point Ge) will be the infinitely remote  point (a singulari ty for the function ~t ). This las t  
point signifies that if the limiting hodograph passes  through the point a~ or above it and to the right of it, the 
final point on the switching curve will be found on the p = 0 axis. In that case the switching curve will be 
depicted by the curves  albl, dlc , and clc (Fig. 2). 

In order  to cons t ruc t  the second switching curve,  we have to draw an arc of the semic i rc le  centered 
at pl ~ in accordance with Eqs .  (3.4) and (3.5), f rom each point of the f i rs t  switching curve,  the radius being 
ri ~ The locus of the termini  of these a rcs  will then yield the second switching curve.  The initial point of 
the f i rs t  switching curve (a l) will be mapped into point (a 2) corresponding now to the origin of the second 
switching curve .  But if the final point on the second switching curve lies on the p = 0 axis, the co r respond-  
ing final point on the second switching curve will be found at the infinitely remote point for which, however,  
the value of the imaginary  coordinate will be equal to the value, with sign reversed ,  of the imaginary  co-  
ordinate of the final point on the f i r s t  switching curve.  

In that case ,  as is c lear  f rom Fig. 2, the maximum number of uniform layers  must  not exceed three 
in the case of optimum matching of load to an a rb i t r a ry  complex admittance (on the level of the specified 
modulus of the reflect ion coefficient).  Now let the final point on the f i rs t  switching curve lie on the hyper -  
bola �9 = 0 (point hi) , i .e. ,  let  the limiting admittance hodograph proceed below and to the left of point a~. 
Then point b 1 will be ref lected into point b~, the final point for the second switching curve (curve a 2c~h~). 
But if the limiting hodograph intersects  the hyperbola  �9 = 0 on the interval a2h ~ in that case,  then we shall 
find, when the second switching curve is mapped, that the final point on the third switching curve will lie 
on the p = 0 axis. 

The corresponding final point on the fourth switching curve will then proceed out to the infinitely r e -  
mote point. In that case the maximum number of uniform layers  will increase to five in the case of 

*This locus will in tersec t  the hyperbola  �9 = 0 at point K in Figs.  2 and 3. 
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optimum matching of an arbitrary complex load. And if the limiting admittance hodograph proceeds below 
and to the left of point b2, we can, in similar fashion, establish the maximum number of uniform layers re- 
quired for optimum matching. By constructing the complete pattern of switching curves, we can use Eq. 
(2 .I) to compute the minimum possible thickness and also other parameters of the optimum nonuniform 
layer. 

1. 

LITERATURE CITED 

K. A. Lur'e and M. M. Machevariani, "Minimization of thickness of nonuniform layer with specified 
reflection coefficient of monochromatic wave," Zh. PriM. Mekhan. i Tekh. Fiz., No. I (1969). 

124 


