MINIMIZATION OF THICKNESS OF NONUNIFORM ABSORBING
LAYER WITH SPECIFIED MODULUS OF REFLECTION
COEFFICIENT OF MONOCHROMATIC WAVE
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Minimization of the thickness of a nonuniform absorbing layer at specified modulus and
phase of the reflected monochromatic wave is a matter of record {1]. Only the modulus
of the reflection coefficient is generally prespecified in practice, The minimization prob-
lem applicable to that case is discussed in the present article.

1, Statement of Problem. Let a plane monochromatic wave impinge on a flat nonuniform absorbing
layer whose index of refraction varies along the normal, in the same direction. Assuming, as in [1],

nt=14 1+ m)Q 1.1)

for the square of the relative refraction index, we will then have the following differential equations for the
real and imaginary parts of the admittance G =p + iq:
dp 2 d_(l —p?—g?— 1 — 1.2
2 =0 —2pq;, o =p"—4q Q (1.2)
Here G is the input admittance of the layer referred to the wave admittance (1/ Py, of the medium
from which the wave arrives; py, ¢, are the density of the medium and the speed of the longitudinal wave
traversing the medium; 7 = wco‘ix is the reduced thickness of the layer bounded by the planes x = (0 and

X = e; w is the angular frequency; x is the coordinate; 7 is specified positive constant; Q(7) is a nonnega-
tive function satisfying the definition

0<QM) <N _ (1.3)

The boundary conditions imposed on values of the phase coordinates p and q are

pO)=p° qO)=¢° (r=0) (1.4)
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where G(0) = p° + ig°; G(Te) = Gg = Pg + iqe are the respective input admittances of the load and of the non-
uniform layer, 7¢ is the reduced thickness of the layer bounded by the planes x = 0 and x = e, and |g¢] is
the assigned value of the modulus of the reflection coefficient.

The optimization problem is formulated as follows: to determine the phase coordinates p(T) and
q(7), satisfying equations (1.2) and initial conditions (1.4), and also the control function Q(T) obeying in-
equality (1.3), such that the reduced thickness 74 of the layer will be minimized when constraint (1.5) is
satisfied.

2. Extremal Partial Arcs. The optimum problem formulated [(1.2)-(1.5)] differs from the one con-
sidered in [1] solely in the form of the boundary condition (1.5). Hence the principal inferences drawn in
[1] remain valid here. The optimum control can assume only the boundary values: @ =0, or else Q = N.
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Corresponding to those values, the optimum admittance hodograph is found from solutions of the differen-
tial equations (1.2)
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where (p,, ) is a point of the admittance plane corresponding to the onset of the change in T on any subin-
terval within which Q(7) retains its value unaffected. The minus sign in front of i in Eq. (2.1) corresponds
to direct integration, the plus sign to inverse integration. The differential equations for the auxiliary phase
coordinates (Lagrangian multipliers) are
. dh, 99
-2 =2y — 2Pk, —L =2p), + 2, 2.2)
The switching function, whose zeros determine the "moments" of the stepwise variation in control
Q(7) from 0 to N (and vice versa), is expressed in terms of the Lagrangian multipliers

K =1k, — &, 2.3)
The control value is maximized on intervals of the optimum admittance hodographs such that K > 0,

and minimized on those intervals where K < 0. The first integral of Egs. (1.2) and (2.2) is
Hy = KQ—2pghp — {1 + @& — pYhg =1 (2 .4)

In the region ® =2pq +n (1 + ¢ —p’) > 0, switching (i.e., a stepwise change in the control response)
can occur only from minimum to maximum, and the reverse holds for the & < 0 region,

Equation (1.5) leads, in accordance with [1] [formula (2 .4)] to the following boundary conditions for
the Lagrangian multipliers:
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where X o is an unknown constant, 9e = 1 + go>~pg?. The existence of a relationship between values of the
phase coordinates pg, ge, and the auxiliary functions Ape, A qe at T = Tg,, and the absence of any such re-
lationship at 7 = 0, allow us to infer that (simultaneous) integration of Egs. (1.2) and (2 2) in the inverse
direction should not be attempted. As a result of inverse integration of equations (1 2), we have the expres-
sion (2.1) with the plus sign in front of the imaginary unit, Integration of equations (2.2) can be performed
with the aid of the auxiliary complex function X = A q* i)\p, for which the two equations (2 .2) are written in
the form

dMdt = —2iG) 2 .6)
The solution of Eq, (2.6) will be
A =exp (—— 2 Og qdr)[lq,"cos 2 Spdt — Ay’ sin2Spdr -+ i(?»p" cos 20§pdr -+ Ag°sin ZSpdrﬂ 2.7

or, by using the expression for G =p + iq [Eq. (2.1)],

A= ho? Dy <1 L ot tg [T (4 (i) @) )2
T4t 4+ (4 im) Q) d+d+imQ*
Here (A°, A %) is a point on the auxiliary plane A A , corresponding to the onset of variation in 7 on
any subinterval within which Q(7) retains its value unaltered.

(2.8)

3. Switching Curves. In order to solve the optimum problem formulated above, we have to construct
a family of switching curves on the phase plane pq, i.e., we have to find the geometrical locus of points de-
termined using Eq. (2.1), at those values of 7§ (switching moments) at which the switching function (2.3)
vanishes, The initial data for constructing the family of curves will be the finite values of the phase co-
ordinates (pg, ge) lying on a circle of specified modulus of the reflection coefficient (Fig. 1). The qualita-
tive features of the situation of interest are such. By utilizing Eqgs. (2.3) and (2.7) we find, for the switch-
ing function
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The values of the switching moments are determined from
3 . the equations

%Y\ : x Ko
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Since the variable Kj° vanishes (by definition) for the second
and subsequent switching curves, for these we have

l . .ﬁﬂjw

Fig, 1 !
g Spd'cz—nz— (=2, .m) (3.3)

For those intervals of the optimum admittance hodographs
such that Q = 0, with the aid of the new variable « (see Fig. 1), we

have
p=Dp’+ricosa, g=rsina (3.4)
o P'2+Q'2+1 o ! . Y,
pe =t — =i — 11
7
and so
Fi G = (3.5)

Equations (3.4) and (3.5) show that these intervals of the ad-
mittance hodographs are half-circles with radii ri° and centers
lying on the p axis. In the case of intervals of the admittance
hodographs such that Q = N (and n # 0), equations (3.2) are solved
numerically, or approximately. When interested in 7, values, we

\ can state for the first switching curve
Fig, 2 = i)
) R R
tg > par g, 7, (3.6)

For points of a circle of specified modulus of reflection coefficient close to the point a; (Figs.2 and 3),
the right-hand member of Eq. (3.6) will be infinitesimally small, so that

1 d 1 ®e
§P T g, — 0, (3.7

The 7, values will also be small in that case; the switching curve begins at point a;. As G becomes
further removed from point a ;, the 7, values will grow. Point a, (Fig. 2) will be the extreme point on the
specified circle, since the extremal admittance hodographs emerging from the ¢ < 0 region will not be
optimal (the minimum thickness for these loci will be greater by an amount corresponding to that portion
of the hodograph lying within the circle of the specified modulus of the reflection coefficient).

The position of the "final" point on the switching curve is not quite so simple to establish, Here we
set up a family of clockwise-unwinding spiraling admittance hodographs (winding from the focus G, =
[1+ (1 + in)N]¥?) rthreading that portion of the specified circle between points a, and a,. Some of the
hodographs (of those emerging from the portion of the circle adjacent to point a) will pass through the
point at which dq/dp =« and will deflect in the direction of increasing phase coordinate p. The others
(emerging from the portion of the circle adjacent to the point a,) will deflect to the opposite side and then
intersect the p = 0 axis and continue into the negative half-plane p < 0.

Since processes associated with propagation of waves through absorbing media are described by phase
coordinates on the positive half-plane, the p = 0 axis can be considered the boundary of that region of ad-
mittance values. Consequently, it is precisely on that axis that the final point of the switching curve will
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lie, if that point belongs to any of the hodographs deflecting in the
direction of the negative half-plane p < 0 and intersecting that
axis,

If this switching point lying on the p = 0 axis is found in the
inverse integration of equations (1.2) proceeding from some point
{(Pe» de), we shall find, by continuing the integration process along
the axis, that the switching function will be identically zero every-
where on that axis, all the way out to the infinitely remote point
on the axis, This is inferred from Eq. (3.1) when the substitution
p =K, = 0 is made and is a consequence of the homogeneity of the
differential equations for Lagrangian multipliers.

This is quite understandable once we bear in mind that the
nonvanishing real part of the admittance of an arbitrary medium,
with optimum matching of purely imaginary loads to the medium,
will correspond to switching points lying solely on the p = 0 axis.
But if not a single one of the hodographs emerging from points on
the circle of specified modulus of the reflection coefficient inter-
sects the p = 0 axis, then the final point on the switching curve
(corresponding to point by) will then lie on the hyperbola ¢ = 0.
(The final point cannot lie in the @ < 0 region, since the Q = 0
value corresponds to the optimum hodograph in that region,) This pattern will hold in the case of low 7
values and reasonably low N values. As n and N increase, a family of optimum admittance loci intersect-
ing the p = 0 axis will show up. When the n and N values are fixed, the question of whether a circle of the
specified modulus of the reflection coefficient corresponds to some family of optimum hodographs inter-
secting the p = 0 axis will be easy to solve, All that will be required is to plot the "limiting" locus (hodo-
graph) intersecting the p = 0 axis at infinitely large q values in accordance with the formulax*

Fig. 3

Petige=1(1 + (1 + i) N)Eetg [t (1 + (1 + in) M) (3.8)

If the limiting locus proceeds to the left of and below point a,, there will be no optimum admittance
hodographs intersecting the p = 0 axis, so that the first switching curve will be depicted by the curve a cqby
(Fig. 3). We can infer from Egs. (2.8) and (3.1) that the switching point for the limiting hodograph (inde-
pendently of the point Gg) will be the infinitely remote point (a singularity for the function) ). This last
point signifies that if the limiting hodograph passes through the point a, or above it and to the right of it, the
final point on the switching curve will be found on the p = 0 axis. In that case the switching curve will be
depicted by the curves aiby, dic, and cic (Fig. 2).

In order to construct the second switching curve, we have to draw an arc of the semicircle centered
at p;°, in accordance with Egs. (3.4) and (3.5), from each point of the first switching curve, the radius being
ry°. The locus of the termini of these arcs will then yield the second switching curve. The initial point of
the first switching curve (a ) will be mapped into point (a,) corresponding now to the origin of the second
switching curve, But if the final point on the second switching curve lies on the p = 0 axis, the correspond-
ing final point on the second switching curve will be found at the infinitely remote point for which, however,
the value of the imaginary coordinate will be equal to the value, with sign reversed, of the imaginary co-
ordinate of the final point on the first switching curve,

In that case, as is clear from Fig. 2, the maximum number of uniform layers must not exceed three
in the case of optimum matching of load to an arbitrary complex admittance (on the level of the specified
modulus of the reflection coefficient). Now let the final point on the first switching curve lie on the hyper-
bola @ =0 (point by), i.e., let the limiting admittance hodograph proceed below and to the left of point a,.
Then point by will be reflected into point by, the final point for the second switching curve (curve a4Cyby) .
But if the limiting hodograph intersects the hyperbola @ = 0 on the interval a,b, in that case, then we shall

find, when the second switching curve is mapped, that the final point on the third switching curve will lie
on the p = 0 axis,

The corresponding final point on the fourth switching curve will then proceed out to the infinitely re-
mote point, In that case the maximum number of uniform layers will increase to five in the case of

*This locus will intersect the hyperhola & = 0 at point K in Figs. 2 and 3.
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optimum matching of an arbitrary complex load, And if the limiting admittance hodograph proceeds below
and to the left of point'bz, we can, in similar fashion, establish the maximum number of uniform layers re-
quired for optimum matching. By constructing the complete pattern of switching curves, we can use Eq.
(2.1) to compute the minimum possible thickness and also other parameters of the optimum nonuniform
layer.
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